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  Finite field or Galois field arithmetic is becoming increasingly a very important solution for calculations in many 
applications like wireless or mobile communication systems, satellite communication systems, storage systems, crypto 
systems, etc. This paper presents a modified multiplier based on Karatsuba multiplication algorithm. To optimize the 
Karatsuba multiplication algorithm, the product terms are splited into two alternative forms and all the terms are expressed in 
the repeated fashion. We generalize the modified algorithm for any input bit GF field application. We have compared our 
proposed multiplier with karatsuba multiplier with respect to complexity. We have also given the general equation for 
hardware requirement for any field. Less no. of additions is required by our proposed multiplier.  The overall area of 
modified multiplier is improved by 53.75% (over without reduction) & 52.08% (over with reduction). Proposed multiplier is 
also faster than actual karatsuba multiplier by 3.63% (over without reduction) & 3.91% (over with reduction). The proposed 
architecture has been simulated and synthesized by Xilinx ISE 14.7 design suite for Vertex , Spartan  and Artix 7 device 
family. The new architecture is simple & easy. Common Expression Elimination (CSE) is applied in the  proposed Modified 
Karatsuba Multiplier (MKM).It is also faster than M-Term Karatsuba algorithm .and it is also applied to compute the circular 
convolution for DSP application. In Vertex5 FPGA device family, computation of 8-bit circular convolution using Modified 
Karatsuba Algorithm (MKA) is 23.69% faster than Karatsuba Algorithm (KA).  It also consumes 68.69% less slices than 
existing KA based Convolution. 

Keywords: Karatsuba Algorithm; Finite fields; FPGA; VLSI; polynomial multiplication; Circular Convolution.Common 
Expression Elimination (CSE). 

1.   INTRODUCTION:  

Galois fields (GF) have gained wide spread applications in error correcting codes and cryptographic algorithms. Further applications 

may be found in signal processing and pseudo random number generation. Modern applications in many cases call for VLSI 

implementations of the arithmetic modules in order to satisfy the high speed requirements.  VLSI allows the designers to allocate 

complex systems consisting of several thousand or even millions transistors on one or very few chips. VLSI modules having Galois 

field multiplier can be classified into three categories: bit- serial multipliers [6], bit- parallel multipliers, and hybrid multiplier. Bit 

parallel architectures tend to be faster and only use combinatorial logic [5]. On the other hand, bit serial architectures require less area 

and uses registers in addition to combinatorial logic, and the hybrid multipliers, which are partially bit-serial and partially bit-parallel. 

Hybrid multipliers are faster than bit-serial ones, while their area is smaller than that of bit- parallel. For efficient VLSI 

implementation suitable hardware architecture is needed. It is obtained by using addition, multiplication, field operations, suitably in 

the architecture. Addition can be implemented with a very low space complexity, multiplication is required to be fast but it is 

implemented with a higher complexity. Efficient architectures require low complexity and fast multipliers. Assuming a basis 

representation of the field elements addition is a relatively inexpensive operation, whereas the other field operation, is costly in terms 

of gate count and delay.  

In the polynomial multiplication, Karatsuba algorithm is used to make multiplication efficient which means algorithm saves 

multiplication at the cost of extra addition. Because multiplication is more costly than addition. Addition of two m-bit numbers 

require m no. of XOR gates. Koc et al. [8] have proposed a recursive algorithm for fast multiplication of large integers having a 

precision of 2k computer words, where k is an integer. Their algorithm has been derived from the Karatsuba-Ofman algorithm and has 

the same asymptotic complexity. They have claimed that the running time of their algorithm is a little better that makes one third as 

many recursive calls. Murat Cenk et al. [9] gave improved formulas to multiply polynomials of small degree over F2    using Chinese 

Remainder Theorem (CRT) that improve multiplication complexity. Gang Zhou et al. have presented complexity analysis and 

efficient FPGA (Field Programmable Gate Array) implementations of bit parallel mixed Karatsuba–Ofman multipliers in [10].   

http://www.jetir.org/


© 2022 JETIR September 2022, Volume 9, Issue 9                                                           www.jetir.org (ISSN-2349-5162) 

 

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b605 
 

     In this paper, a modified multiplier based on Karatsuba multiplication algorithm is proposed. To optimize the Karatsuba 

multiplication algorithm, the product terms are splited into two alternative forms and computed all the terms in the repeated fashion. 

We generalize the modified algorithm for any input bit GF field application. We have compared our proposed multiplier with 

karatsuba multiplier with respect to complexity. We have also given the general equation for hardware requirement for any field. Our 

proposed multiplier is 30.36% (over without reduction) & 31.30% (over with reduction) less no of XOR gates than karatsuba 

multiplier. The overall area (in terms of slices) is also improved by 53.75% (over without reduction) & 52.08% (over with reduction). 

MKM is also faster than KM by 3.63% (over without reduction) & 3.91% (over with reduction). The proposed design has been 

simulated and synthesized using Xilinx FPGA based Spartan and Vertex device family. The new architecture is simple and easy. It is 

also applied to compute circular convolution. In Spartan3E FPGA device family, computation of 8-bit circular convolution using 

MKA is 23.69% faster than KA.  It also consumes 68.69% less slices than existing KA based convolution. 

      The rest of the paper is organized as follows. Basics of Galois Field arithmetic is presented in section-II. A new method for 

implementations of Karatsuba multipliers has been proposed in Section-III. Results & discussion are provided in Section-IV. Section-

V describes application of proposed algorithm to compute the circular convolution and finally the paper is concluded in Section-VI.  

2.   GALOIS FIELD ARITHMETIC:  

      Galois field defines as GF(pm) which is a field with pm numbers of elements (p is a prime number) [7]. Furthermore, order of 

Galois field is the number of elements in the Galois field. Addition and multiplication are two basic operations mainly done in Galois 

field arithmetic. Addition and subtraction of elements of GF(2m) are simple XOR operations of the two operands. Each of the 

elements in the GF is first represented as a corresponding polynomial. Multiplication operation over the Galois field is a more 

complex operation than the addition operation. For m=4, the product term is represented as follows:  

   A(x) = a3x3 +a2x2+a1x +a0                                                      (1) 

                             B(x) = b3x3 +b2x2+b1x +b0                                        (2) 

A(x)×B(x)= (a3x3 +a2x2+a1x +a0 ) × (b3x3 +b2x2+b1x +b0) 
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The result has seven coefficients which must convert back into a 4-tuple to achieve closure. This can be done by substituting the value 

of x6, x5 and x4 with their polynomial representations and summing terms. 

   A(x) × B(x) = (a3b3 + a3b0 + a2b1 + a1b2 + a0b3) x3+ (a3b3 + a3b2 + a2b3 + a2b0 + a1b1 +a0b2) x2 + (a3b2 + a2b3 + a3 b1 + a2b2 + a1b3 

+ a1b0 + a0b1) x+ (a3b1 + a2 b2 +a1b3 +a0b0).                                                                                                               (3)   

 

Eqn. (3) is often expressed in matrix form. 
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The multiplication results in eqn.(3) can be implemented as logical ANDs and the additions as logical XORs. Thus, the expression 

requires only 16 AND and 15 XOR to implement. 

GF multipliers are dependent on addition and multiplication. Addition is easy and it equates to a bit-wise XOR of the m-tuple and is 

realized by an array of mXOR gates. The GF multiplier much more complicated and is the key to developing efficient of GF field 

computational circuits. We have used the Verilog HDL language to code all the designs. 

 

Karatsuba Multiplier (KM) 

    In this section, we introduce the fundamental Karatsuba algorithm which can successfully be applied to polynomial multiplication. 

The Karatsuba Algorithm was introduced by Karatsuba in 1962. The fundamental Karatsuba multiplication for polynomial in GF(2m) 

is a recursive divide-and-conquer technique. It is considered as one of the fastest way to multiply long numbers. For polynomial 

multiplication with original Karatsuba method both operands have to be divided into two equal parts. Then each sub operands is 

divided again into two parts. The process will continue until this become single. Then we get the followings by splitting the 

polynomials using KM: 

If  A(x)  and  B(x)  are  field  polynomials  with  degrees  3  over a field GF (24). 

With the auxiliary variables  

D0 = a0b0   , D1 = a1b1     

D2 = a2b2  , D3 = a3b3 

D0, 1 = (a0 + a1) (b0 + b1)    

D0, 2 = (a0 + a2) (b0 + b2)  

D1, 3 = (a1 + a3) (b1 + b3) 

D3, 2 = (a3 + a2) (b3 + b2) 

D0,1,2,3 = (a0 + a1+ a2 +a3) (b0 + b1+b2+b3) 
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Field multiplication can be performed into two steps. Firstly, we perform an ordinary polynomial multiplication of two field elements. 

Secondly, a reduction operation with an irreducible polynomial is need to be performed in order to obtain the (m - 1) degree 

polynomial. It is noticed that once the irreducible polynomial p(x) = x4+ x+1 has been selected, the reduction step can be 

accomplished by using XOR gates only [9]. From the irreducible polynomial p(x) we can replace x 4= x+1, x5= x2+ x and x6 = x 3+ x2 

to obtain C’ (x) as follows:  

       C’(x) = A(x) B(x) mod p(x)  

C’(x)=(D0,1,2,3–D1,3–D2,0–D3,2 –D0,1+D0+D1+D2)x3+ (D0,2+D3,2 +D1 –D0) x2+(D0,1+D1,3+D3,2 –D0)x+(D1,3–D1–D3+D2+D0)                                                     

(5) 

3.   MODIFIED KARATSUBA MULTIPLIER (MKM): 

     In this section our Modified Karatsuba Algorithm (MKA) has been discussed. In MKA all techniques are same as fundamental 

basic Karatsuba multiplier except the splitting techniques. To optimize the Karatsuba Multiplication Algorithm, the product terms are 

splited into two alternative forms. This reduction technique requires small area and less delay than others existing multiplication 

algorithms. The results are compared by using Xilinx based synthesis tools on different FPGA device family like Spartan & Vertex. 

Our synthesis results are better than existing basic Karatsuba algorithm which is shown in the following section. Assume A(x)  and  

B(x)  are two field  polynomials  with  degree 7 in  GF(28).  

A(x) = a7x 7+a6x 6+a5x5 +a4x4 +a3x3+a2x2+ a1x+ a0 

                                          B(x) = b7x 7+b6x6+b5x5 +b4x4 +b3x3+b2x2+b1x+ b0 

When we compute C(x) = A(x)·B(x) as the following: 
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Then we get the following expression by splitting the coefficients of C(x)= A(x)B(x)  polynomial using MKA.  

Then C’(x) is computed by using the relationship C’(x)=C(x) mod p(x). Using the irreducible primitive 

polynomial 1)( 2348  xxxxxp , terms x14, x13, x12, x11, x10, x9 and x8 are replaced in C(x). The simplified expression of 

C’(x) is as follows: 

 

C(x) =  D7 x14+  (D7,6 – D7 –D6) x13+(D7,5– D7– D5+D6) x12+[ (D7,4–D4 –D7)+(D6,5–D6–D5)] x11+ [(D7,3–D7–D3)+(D6,4–D6–D4)+D5] 

x10+ [(D2,7–D2–D7)+(D3,6–D3–D6)+( D4,5–D4–D5)] x9+[(D1,7–D1–D7)+ (D2,6–D2–D6)+(D3,5– D3–D5)+D4] x8+ [(D0,7–D0–D7)+(D1,6–

D1–D6)+(D2,5–D2–D5)+ (D3,4–D3–D4)] x7+[(D0,6–D0–D6)+(D1,5–D1–D5)+(D2,4–D2–D4)+D3] x6+[(D0,5–D0–D5)+(D1,4–D1–D4)+(D2,3–

D2–D3)]x5+[(D0,4–D0–D4)+(D1,3–D1–D3)+D2]x4+ [(D0,3–D0–D3)+(D1,2–D1–D2)]x3+(D0,2–D0–D2+D1)x2 +(D0,1–D0–D1) x+D0                                                                                                                                      

(6) 

 

Here operands are splited into two alternative terms. Employing auxiliary variables, we can obtain the following expression.  

D0= a0b0,   D 0,1= (a0+a1) · (b0+b1), D1= a1b1,  D 2,0= (a2+a0) · (b2+b0) 

D2 = a2b2,  D 0,3 = (a0+a3) · (b0+b3), D3 = a3b3, D1,2= (a1+a2) · (b1+b2) 

D4= a4b4,  D0,4 = (a0+a4) · (b0+b4), D1,3= (a1+a3) · (b1+b3), D0,5= (a0+a5) · (b0+b5) 

D5= a5b5, D0,6= (a0+a6) · (b0+b6), D6= a6b6, D1,5= (a1+a5) · (b1+b5) 

D2,4= (a2+a4) · (b2+b4), D2,5= (a2+a5) · (b2+b5), 

D4,3 = (a4+a3) · (b4+b3), D1,7= (a1+a7) · (b1+b7) 

D2, 6= (a2+a6) · (b2+b6), D5,3= (a5+a3) · (b5+b3) 

D2,7= (a2+a7) · (b2+b7), D6,3= (a6+a3) · (b6+b3) (7) 

D4,5= (a4+a5) · (b4+b5), D7,3= (a7+a3) · (b7+b3) 

D6,4= (a6+a4) · (b6+b4), D7,4= (a7+a4) · (b7+b4) 

D6,5= (a6+a5) · (b6+b5), D7,5= (a7+a5) · (b7+b5) 

http://www.jetir.org/


© 2022 JETIR September 2022, Volume 9, Issue 9                                                           www.jetir.org (ISSN-2349-5162) 

 

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b607 
 

D7, 6= (a7+a6) · (b7+b6), D7= a7b7 

Figure1 shows the block diagram of Modified Karatsuba multiplier for degree-3 polynomials. 

 

Fig.1:   Block diagram of Modified Karatsuba multiplier for degree-3 polynomial 

The general form of the coefficients of partial product terms of our proposed multiplier is given below. 
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TABLE 1: Complexity comparison between KM and MKM for different GF field  

 

Degree 

n 

bit 

m 

Complexity of Karatsuba 

Multiplier (KM) 

Complexity of Modified 

Karatsuba Multiplier 

(MKM) 

Improvement (%) 

# Mul. # Addition # Mul. # Addition Mul. Addition 

1 2 3 4 3 4 0.00 0.00 

2 3 6 13 6 12 0.00 7.69 

3 4 9 24 10 23 -11.11 4.17 

4 5 15 46 15 37 0.00 19.57 

5 6 21 59 21 54 0.00 8.47 

6 7 28 99 28 74 0.00 25.25 

7 8 36 100 36 97 0.00 3.00 

8 9 45 139 45 123 0.00 11.51 

9 10 55 174 55 152 0.00 12.64 

10 11 66 265 66 184 0.00 30.57 

11 12 78 221 78 219 0.00 0.90 

Table1 shows the comparison of no. of multiplications and additions required by the two different design techniques. It is shown 

that all the cases our proposed algorithm is required lesser no. of additions. We have also given formula to calculate the no. of 

addition and multiplication for different bit lengths (m). 

 i. No. of multipliers 
2

)1( 


mm
 

             ii. No. of additions )13(1   mNm  
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                                    Where Nm-1 is the no. of additions in (m-1) steps 

4.   RESULTS & DISCUSSION: 

            We have studied the performance of each multiplier over GF(28) employing the Xilinx ISE simulation tool. Multipliers are 

implemented on Vertex5 5vsx50tff1136-1 device. These multipliers are compared based on number of slices, number of 4-input 

LUTs, bonded I/O blocks and delay. 

 

 

Fig. 2: Simulation results of Modified Karatsuba Multiplier without reduction 

Fig. 3: Simulation results of 

Modified Karatsuba Multiplier after reduction 

Figure 2 & 3 shows the input-output waveform of proposed multiplier for both without reduction and with reduction in GF(28).  

TABLE 2: Comparison of resource utilization between KM and MKM in GF(28). 

Name of Parameters 

Karatsuba Multiplier 
Modified karatsuba 

Multiplier 
Improvement 

over without 

reduction (%) 

Improvement 

over with 

reduction (%) without 

reduction 

with 

reduction 

without 

reduction 

with 

reduction 

No. of XOR gates                              112 115 78 79 30.36 31.30 

No. of Slice LUTs 

(out of  32640) 
80 96 37 46 53.75 52.08 

No. of LUT Flip Flop 

pairs used (out of  37) 
80 96 37 46 53.75 52.08 

No. of bonded IOBs 

(out of    480)     
31 24 31 24 0.00 0.00 

Max. combinational 

path delay (ns) 
7.82 9.611 7.536 9.235 3.63 3.91 

 

Table2 shows the simulation results of proposed multiplier and original karatsuba multiplier both for without reduction and with 

modulo reduction in GF(28) field. Our proposed multiplier is 30.36% (over without reduction) & 31.30% (over with reduction) less no 

of XOR gates than Karatsuba multiplier. The overall area (in terms of slices) is also improved by 53.75% (over without reduction) & 

52.08% (over with reduction). MKM is also faster than KM by 3.63% (over without reduction) & 3.91% (over with reduction). 
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TABLE 3: Comparison of resource utilization between KM and MKM (applied CSE method) 

PARAMETER BIT CSE METHOD 

APPLIED IN 

PROOSED 

KARATSUBA 

MULTIPLIER 

M-TERM KARATSUBA 

LIKE BINARY 

POLYNOMIAL 

MULTIPLIER 

NO. OF 

LUT(OUT OF 

63400) 

 

 

 

 

       4 

12 29 

NO. OF 

IOB(OUT OF 

210) 

19 19 

PROPAGATION 

PATH 

DELAY(nS) 

1.870 nS 2.767nS 

NO. OF 

LUT(OUT OF 

63400) 

        

 

        7 

32 57 

NO. OF 

IOB(OUT OF 

210) 

27 27 

PROPAGATION 

PATH 

DELAY(nS) 

 2.37nS 2.80nS 

 

Table3 shows the simulation results of CSE  method applied in  proposed multiplier and M-term Karatsuba like binary polynomial 

Multiplier for without reduction  in GF(24) & GF(27) field. Our proposed multiplier is faster than M-term Karatsuba like Binary 

polynomial Multiplier[13].  

5.   APPLICATION 

    In this Section, computation of circular convolution by employing proposed  Modified Karatsuba Algorithm is presented. Assume  

A  and B  are the two sequences,  where A={a0,a1,a2,a3,a4,a5,a6,a7} and   B={b0,b1,b2,b3,b4,b5,b6,b7}. All the points of A are placed on 

the outer circle in the counter clockwise direction. Starting at the same point as A, all points of B are placed on the inner circle  in 

clockwise direction.    

 

Expression of d0 is obtained by multiplying the corresponding samples points and then adding the product terms. 

d0=a0b0+a7b1+a6b2+a5b3+a4b4+a3b5+a2b6+a1b7                                               (8)                                                   

Applying Modified Karatsuba Algorithm (MKA) in equation (8) we can obtain, 

 

d0=a0b0+(a7+a1)(b7+b1)+a7b7+a1b1+(a5+a3)(b5+b3)+ 

      a5b5+a3b3+(a2+a6)(b2+b6)+a2b2+a6b6+a4b4                                                                                  (9) 

Similarly the expressions of  d1,d2,d3, d4 d5,d6 and d7  are obtained and they are as follows: 

 

d1=a0b1+a1b0+a2b7+a3b6+a4b5+a5b4+a6b3+a7b2                 

   =(a0+a1)(b0+b1)+a0b0+a1b1+(a2+a7)(b2+b7)+a2b2+a7b7+ 

(a3+a6)(b3+b6)+a3b3+a6b6+(a5+a4)(b5+b4)+a5b5+a4b4                                          (10) 

 

d2=a0b2+a1b1+a2b0+a3b7+a4b6+a5b5+a6b4+a7b3                                                       

=a1b1+(a0+a2)(b0+b2)+a0b0+a2b2+(a7+a3)(b7+b3)+a7b7+a3b3     

+(a4+a6)(b4+b6)+a4b4+a6b6+a5b5                                                                            (11) 

 

d3=a0b3+a1b2+a2b1+a3b0+a4b7+a5b6+a6b5+a7b4 

      = (a0+a3)(b0+b3)+a0b0+a3b3+(a1+a2)(b1+b2)+a1b1+a2b2                                                                 

   +(a4+a7)(b4+b7)+a4b4+a7b7+(a6+a5)(b6+b5)+a5b5+a6b6                                       (12) 
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d4= a0b4 +a1b3+a2b2+a3b1+a4b0+a5b7+a6 b6+a7b5                                                                                                

  =(a0+a4)(b0+b4)+a0b0+a4b4+(a1+a3)(b1+b3)+a1b1+a3b3+ 

    (a5+a7)(b5+b7)+a5b5+a7b7+ a2b2+a6b6                                                                  (13) 

 

d5=a0b5+a1b4+a2b3+a3b2+a4b1+a5b0+a6b7+a7b6   

   =(a0+a5)(b0+b5)+a0b0+a5b5+(a1+a4)(b1+b4)+a1b1+a4b4 

  +(a6+a7)(b6+b7)+a6b6+a7b7+(a2+a3)(b2+b3)+ a2b2+a3b3                                                           (14) 

 

d6= a0b6 +a1b5+a2 b4+a3b3+a4b2+a5b1+a6 b0+a7b7                                                                  

    =(a0+a6)(b0+b6)+a0b0+a6b6+(a1+a5)(b1+b5)+a1b1+a5b5+ 

      (a2+a4)(b2+b4)+a2b2+a4b4+a7b7+a3b3                                                                 (15) 

 

d7=a0b7+a1b6+a2b5+a3b4+a4b3+a5b2+a6b1+a7b0 

      =(a0+a7)(b0+b7)+a0b0+a7b7+(a1+a6)(b1+b6)+a1b1+a6b6                                                             

  +(a2+a5)(b2+b5)+a2b2+a5b5+(a3+a4)(b3+b4)+a4b4+a3b3                                       (16) 

 

TABLE 5: Comparison of device utilization and combinational path delay to compute circular convolution using KA and MKA for 8-bit input 

Name of Parameters 

Circular 

Convolution 

using KA 

Circular 

Convolution 

using MKA 

Improvement 

(%) 

No. of XOR gates                              122 65 46.72 

No. of Slice LUTs (out of  32640) 99 31 68.69 

No. of bonded IOBs ( out of    480)     24 24 0.00 

Max. combinational path delay (ns) 9.614 7.336 23.69 
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Fig. 9: Area occupied (% slices) between circular Convolution using KA  and  MKA 

 

The circular convolution algorithm is coded using Verilog HDL language. It is simulated and synthesized using Xilinx ISE 14.3i 

software tool. Table 5 shows the comparison of device utilization and combinational path delay to compute circular convolution using 

KA and MKA. It is observed that circular convolution based on MKA requires least amount of area and path delay. Figure 9 shows 

the resource utilization in terms of % of XOR gates and slices, necessary for the implementation. In Vertex5 FPGA device family, 

computation of 8-bit circular convolution based on MKA is 23.69% faster than KA.  It also consumes 68.69% less slices than existing 

KA based convolution. 

6.   CONCLUSION 

In   this paper, modified Karatsuba multipliers for degree 7 polynomials have been implemented on FPGA platform. The  device  

utilization and combinational  path  delay  of  MKM  have   been   compared  with  standard  8×8  KM. It has been observed that the 

proposed multiplier has better timing performance than standard KM. The new architecture   is very simple and easy. This feature is 

advantageous to have a suitable trade-offs between area and speed for implementing circular convolution algorithm in VLSI. In FPGA 

device family, computation of 8-bit circular convolution using MKA is 23.69% faster than KA. It also consumes 68.69% less slices 

than existing KA based convolution. MKM may also be used to design cryptosystems. Proposed multiplier is faster and hardware 

efficient compared to existing Karatsuba multiplier. 
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