
© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b604

AN IMPROVED GENERALIZED KARATSUBA

MULTIPLIER IN GF(2M) FIELD AND IT’S

CONVOLUTION APPLICATION

RAZIA SULTANA
Assistant Professor

Haldia Institute of Technology
Haldia, India

razia04@gmail.com

 Finite field or Galois field arithmetic is becoming increasingly a very important solution for calculations in many
applications like wireless or mobile communication systems, satellite communication systems, storage systems, crypto
systems, etc. This paper presents a modified multiplier based on Karatsuba multiplication algorithm. To optimize the
Karatsuba multiplication algorithm, the product terms are splited into two alternative forms and all the terms are expressed in
the repeated fashion. We generalize the modified algorithm for any input bit GF field application. We have compared our
proposed multiplier with karatsuba multiplier with respect to complexity. We have also given the general equation for
hardware requirement for any field. Less no. of additions is required by our proposed multiplier. The overall area of
modified multiplier is improved by 53.75% (over without reduction) & 52.08% (over with reduction). Proposed multiplier is
also faster than actual karatsuba multiplier by 3.63% (over without reduction) & 3.91% (over with reduction). The proposed
architecture has been simulated and synthesized by Xilinx ISE 14.7 design suite for Vertex , Spartan and Artix 7 device
family. The new architecture is simple & easy. Common Expression Elimination (CSE) is applied in the proposed Modified
Karatsuba Multiplier (MKM).It is also faster than M-Term Karatsuba algorithm .and it is also applied to compute the circular
convolution for DSP application. In Vertex5 FPGA device family, computation of 8-bit circular convolution using Modified
Karatsuba Algorithm (MKA) is 23.69% faster than Karatsuba Algorithm (KA). It also consumes 68.69% less slices than
existing KA based Convolution.

Keywords: Karatsuba Algorithm; Finite fields; FPGA; VLSI; polynomial multiplication; Circular Convolution.Common
Expression Elimination (CSE).

1. INTRODUCTION:

Galois fields (GF) have gained wide spread applications in error correcting codes and cryptographic algorithms. Further applications

may be found in signal processing and pseudo random number generation. Modern applications in many cases call for VLSI

implementations of the arithmetic modules in order to satisfy the high speed requirements. VLSI allows the designers to allocate

complex systems consisting of several thousand or even millions transistors on one or very few chips. VLSI modules having Galois

field multiplier can be classified into three categories: bit- serial multipliers [6], bit- parallel multipliers, and hybrid multiplier. Bit

parallel architectures tend to be faster and only use combinatorial logic [5]. On the other hand, bit serial architectures require less area

and uses registers in addition to combinatorial logic, and the hybrid multipliers, which are partially bit-serial and partially bit-parallel.

Hybrid multipliers are faster than bit-serial ones, while their area is smaller than that of bit- parallel. For efficient VLSI

implementation suitable hardware architecture is needed. It is obtained by using addition, multiplication, field operations, suitably in

the architecture. Addition can be implemented with a very low space complexity, multiplication is required to be fast but it is

implemented with a higher complexity. Efficient architectures require low complexity and fast multipliers. Assuming a basis

representation of the field elements addition is a relatively inexpensive operation, whereas the other field operation, is costly in terms

of gate count and delay.

In the polynomial multiplication, Karatsuba algorithm is used to make multiplication efficient which means algorithm saves

multiplication at the cost of extra addition. Because multiplication is more costly than addition. Addition of two m-bit numbers

require m no. of XOR gates. Koc et al. [8] have proposed a recursive algorithm for fast multiplication of large integers having a

precision of 2k computer words, where k is an integer. Their algorithm has been derived from the Karatsuba-Ofman algorithm and has

the same asymptotic complexity. They have claimed that the running time of their algorithm is a little better that makes one third as

many recursive calls. Murat Cenk et al. [9] gave improved formulas to multiply polynomials of small degree over F2 using Chinese

Remainder Theorem (CRT) that improve multiplication complexity. Gang Zhou et al. have presented complexity analysis and

efficient FPGA (Field Programmable Gate Array) implementations of bit parallel mixed Karatsuba–Ofman multipliers in [10].

http://www.jetir.org/

© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b605

 In this paper, a modified multiplier based on Karatsuba multiplication algorithm is proposed. To optimize the Karatsuba

multiplication algorithm, the product terms are splited into two alternative forms and computed all the terms in the repeated fashion.

We generalize the modified algorithm for any input bit GF field application. We have compared our proposed multiplier with

karatsuba multiplier with respect to complexity. We have also given the general equation for hardware requirement for any field. Our

proposed multiplier is 30.36% (over without reduction) & 31.30% (over with reduction) less no of XOR gates than karatsuba

multiplier. The overall area (in terms of slices) is also improved by 53.75% (over without reduction) & 52.08% (over with reduction).

MKM is also faster than KM by 3.63% (over without reduction) & 3.91% (over with reduction). The proposed design has been

simulated and synthesized using Xilinx FPGA based Spartan and Vertex device family. The new architecture is simple and easy. It is

also applied to compute circular convolution. In Spartan3E FPGA device family, computation of 8-bit circular convolution using

MKA is 23.69% faster than KA. It also consumes 68.69% less slices than existing KA based convolution.

 The rest of the paper is organized as follows. Basics of Galois Field arithmetic is presented in section-II. A new method for

implementations of Karatsuba multipliers has been proposed in Section-III. Results & discussion are provided in Section-IV. Section-

V describes application of proposed algorithm to compute the circular convolution and finally the paper is concluded in Section-VI.

2. GALOIS FIELD ARITHMETIC:

 Galois field defines as GF(pm) which is a field with pm numbers of elements (p is a prime number) [7]. Furthermore, order of

Galois field is the number of elements in the Galois field. Addition and multiplication are two basic operations mainly done in Galois

field arithmetic. Addition and subtraction of elements of GF(2m) are simple XOR operations of the two operands. Each of the

elements in the GF is first represented as a corresponding polynomial. Multiplication operation over the Galois field is a more

complex operation than the addition operation. For m=4, the product term is represented as follows:

 A(x) = a3x3 +a2x2+a1x +a0 (1)

 B(x) = b3x3 +b2x2+b1x +b0 (2)

A(x)×B(x)= (a3x3 +a2x2+a1x +a0) × (b3x3 +b2x2+b1x +b0)

0

00

1

1001

2

201102

3

21123003

4

312213

5

3223

6

33

)()()(

)()()()(

xbaxbabaxbababa

xbabababaxbababaxbabaxba





The result has seven coefficients which must convert back into a 4-tuple to achieve closure. This can be done by substituting the value

of x6, x5 and x4 with their polynomial representations and summing terms.

 A(x) × B(x) = (a3b3 + a3b0 + a2b1 + a1b2 + a0b3) x3+ (a3b3 + a3b2 + a2b3 + a2b0 + a1b1 +a0b2) x2 + (a3b2 + a2b3 + a3 b1 + a2b2 + a1b3

+ a1b0 + a0b1) x+ (a3b1 + a2 b2 +a1b3 +a0b0). (3)

Eqn. (3) is often expressed in matrix form.

























03123

230312

2123031

1230

aaaaa

aaaaaa

aaaaaaa

aaaa



















3

2

1

0

b

b

b

b

=



















3

2

1

0

c

c

c

c

 (4)

The multiplication results in eqn.(3) can be implemented as logical ANDs and the additions as logical XORs. Thus, the expression

requires only 16 AND and 15 XOR to implement.

GF multipliers are dependent on addition and multiplication. Addition is easy and it equates to a bit-wise XOR of the m-tuple and is

realized by an array of mXOR gates. The GF multiplier much more complicated and is the key to developing efficient of GF field

computational circuits. We have used the Verilog HDL language to code all the designs.

Karatsuba Multiplier (KM)

 In this section, we introduce the fundamental Karatsuba algorithm which can successfully be applied to polynomial multiplication.

The Karatsuba Algorithm was introduced by Karatsuba in 1962. The fundamental Karatsuba multiplication for polynomial in GF(2m)

is a recursive divide-and-conquer technique. It is considered as one of the fastest way to multiply long numbers. For polynomial

multiplication with original Karatsuba method both operands have to be divided into two equal parts. Then each sub operands is

divided again into two parts. The process will continue until this become single. Then we get the followings by splitting the

polynomials using KM:

If A(x) and B(x) are field polynomials with degrees 3 over a field GF (24).

With the auxiliary variables

D0 = a0b0 , D1 = a1b1

D2 = a2b2 , D3 = a3b3

D0, 1 = (a0 + a1) (b0 + b1)

D0, 2 = (a0 + a2) (b0 + b2)

D1, 3 = (a1 + a3) (b1 + b3)

D3, 2 = (a3 + a2) (b3 + b2)

D0,1,2,3 = (a0 + a1+ a2 +a3) (b0 + b1+b2+b3)

http://www.jetir.org/

© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b606

Field multiplication can be performed into two steps. Firstly, we perform an ordinary polynomial multiplication of two field elements.

Secondly, a reduction operation with an irreducible polynomial is need to be performed in order to obtain the (m - 1) degree

polynomial. It is noticed that once the irreducible polynomial p(x) = x4+ x+1 has been selected, the reduction step can be

accomplished by using XOR gates only [9]. From the irreducible polynomial p(x) we can replace x 4= x+1, x5= x2+ x and x6 = x 3+ x2

to obtain C’ (x) as follows:

 C’(x) = A(x) B(x) mod p(x)

C’(x)=(D0,1,2,3–D1,3–D2,0–D3,2 –D0,1+D0+D1+D2)x3+ (D0,2+D3,2 +D1 –D0) x2+(D0,1+D1,3+D3,2 –D0)x+(D1,3–D1–D3+D2+D0)

(5)

3. MODIFIED KARATSUBA MULTIPLIER (MKM):

 In this section our Modified Karatsuba Algorithm (MKA) has been discussed. In MKA all techniques are same as fundamental

basic Karatsuba multiplier except the splitting techniques. To optimize the Karatsuba Multiplication Algorithm, the product terms are

splited into two alternative forms. This reduction technique requires small area and less delay than others existing multiplication

algorithms. The results are compared by using Xilinx based synthesis tools on different FPGA device family like Spartan & Vertex.

Our synthesis results are better than existing basic Karatsuba algorithm which is shown in the following section. Assume A(x) and

B(x) are two field polynomials with degree 7 in GF(28).

A(x) = a7x 7+a6x 6+a5x5 +a4x4 +a3x3+a2x2+ a1x+ a0

 B(x) = b7x 7+b6x6+b5x5 +b4x4 +b3x3+b2x2+b1x+ b0

When we compute C(x) = A(x)·B(x) as the following:

3

3

4

4

5

5

6

6

7

701

2

2

3

3

4

4

5

5

6

6

7

7

' ()()(xbxbxbxbxbaxaxaxaxaxaxaxaxC 

)01

2

2

3

3 bxbxbxb 

000110

2

1102

20

3

03122130

4

0413223140

5

0514

23324150

6

06152433425160

7

07

16253443526170

8

172635445362

71

9

273645546372

10

7364554637

11

74655647

12

667557

13

7667

14

77

)()

()()()

()()

()

()()(

)()()()(

baxbabaxbaba

baxbabababaxbababababaxbaba

babababaxbababababababaxba

bababababababaxbabababababa

baxbabababababaxbababababa

xbabababaxbababaxbabaxba













Then we get the following expression by splitting the coefficients of C(x)= A(x)B(x) polynomial using MKA.

Then C’(x) is computed by using the relationship C’(x)=C(x) mod p(x). Using the irreducible primitive

polynomial 1)(2348  xxxxxp , terms x14, x13, x12, x11, x10, x9 and x8 are replaced in C(x). The simplified expression of

C’(x) is as follows:

C(x) = D7 x14+ (D7,6 – D7 –D6) x13+(D7,5– D7– D5+D6) x12+[(D7,4–D4 –D7)+(D6,5–D6–D5)] x11+ [(D7,3–D7–D3)+(D6,4–D6–D4)+D5]

x10+ [(D2,7–D2–D7)+(D3,6–D3–D6)+(D4,5–D4–D5)] x9+[(D1,7–D1–D7)+ (D2,6–D2–D6)+(D3,5– D3–D5)+D4] x8+ [(D0,7–D0–D7)+(D1,6–

D1–D6)+(D2,5–D2–D5)+ (D3,4–D3–D4)] x7+[(D0,6–D0–D6)+(D1,5–D1–D5)+(D2,4–D2–D4)+D3] x6+[(D0,5–D0–D5)+(D1,4–D1–D4)+(D2,3–

D2–D3)]x5+[(D0,4–D0–D4)+(D1,3–D1–D3)+D2]x4+ [(D0,3–D0–D3)+(D1,2–D1–D2)]x3+(D0,2–D0–D2+D1)x2 +(D0,1–D0–D1) x+D0

(6)

Here operands are splited into two alternative terms. Employing auxiliary variables, we can obtain the following expression.

D0= a0b0, D 0,1= (a0+a1) · (b0+b1), D1= a1b1, D 2,0= (a2+a0) · (b2+b0)

D2 = a2b2, D 0,3 = (a0+a3) · (b0+b3), D3 = a3b3, D1,2= (a1+a2) · (b1+b2)

D4= a4b4, D0,4 = (a0+a4) · (b0+b4), D1,3= (a1+a3) · (b1+b3), D0,5= (a0+a5) · (b0+b5)

D5= a5b5, D0,6= (a0+a6) · (b0+b6), D6= a6b6, D1,5= (a1+a5) · (b1+b5)

D2,4= (a2+a4) · (b2+b4), D2,5= (a2+a5) · (b2+b5),

D4,3 = (a4+a3) · (b4+b3), D1,7= (a1+a7) · (b1+b7)

D2, 6= (a2+a6) · (b2+b6), D5,3= (a5+a3) · (b5+b3)

D2,7= (a2+a7) · (b2+b7), D6,3= (a6+a3) · (b6+b3) (7)

D4,5= (a4+a5) · (b4+b5), D7,3= (a7+a3) · (b7+b3)

D6,4= (a6+a4) · (b6+b4), D7,4= (a7+a4) · (b7+b4)

D6,5= (a6+a5) · (b6+b5), D7,5= (a7+a5) · (b7+b5)

http://www.jetir.org/

© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b607

D7, 6= (a7+a6) · (b7+b6), D7= a7b7

Figure1 shows the block diagram of Modified Karatsuba multiplier for degree-3 polynomials.

Fig.1: Block diagram of Modified Karatsuba multiplier for degree-3 polynomial

The general form of the coefficients of partial product terms of our proposed multiplier is given below.

121)()(

1)()(

20

2

1

0

2

1

0

2,0



































ntoniforbabbaaD

ntoiforbabbaaD

nandiforbaD

j

n

nij

jjij

i

nij

jiji

j

i

j

jjij

i

j

jiji

nj

jji

 (8)

TABLE 1: Complexity comparison between KM and MKM for different GF field

Degree

n

bit

m

Complexity of Karatsuba

Multiplier (KM)

Complexity of Modified

Karatsuba Multiplier

(MKM)

Improvement (%)

Mul. # Addition # Mul. # Addition Mul. Addition

1 2 3 4 3 4 0.00 0.00

2 3 6 13 6 12 0.00 7.69

3 4 9 24 10 23 -11.11 4.17

4 5 15 46 15 37 0.00 19.57

5 6 21 59 21 54 0.00 8.47

6 7 28 99 28 74 0.00 25.25

7 8 36 100 36 97 0.00 3.00

8 9 45 139 45 123 0.00 11.51

9 10 55 174 55 152 0.00 12.64

10 11 66 265 66 184 0.00 30.57

11 12 78 221 78 219 0.00 0.90

Table1 shows the comparison of no. of multiplications and additions required by the two different design techniques. It is shown

that all the cases our proposed algorithm is required lesser no. of additions. We have also given formula to calculate the no. of

addition and multiplication for different bit lengths (m).

 i. No. of multipliers
2

)1(


mm

 ii. No. of additions)13(1   mNm

http://www.jetir.org/

© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b608

 Where Nm-1 is the no. of additions in (m-1) steps

4. RESULTS & DISCUSSION:

 We have studied the performance of each multiplier over GF(28) employing the Xilinx ISE simulation tool. Multipliers are

implemented on Vertex5 5vsx50tff1136-1 device. These multipliers are compared based on number of slices, number of 4-input

LUTs, bonded I/O blocks and delay.

Fig. 2: Simulation results of Modified Karatsuba Multiplier without reduction

Fig. 3: Simulation results of

Modified Karatsuba Multiplier after reduction

Figure 2 & 3 shows the input-output waveform of proposed multiplier for both without reduction and with reduction in GF(28).

TABLE 2: Comparison of resource utilization between KM and MKM in GF(28).

Name of Parameters

Karatsuba Multiplier
Modified karatsuba

Multiplier
Improvement

over without

reduction (%)

Improvement

over with

reduction (%) without

reduction

with

reduction

without

reduction

with

reduction

No. of XOR gates 112 115 78 79 30.36 31.30

No. of Slice LUTs

(out of 32640)
80 96 37 46 53.75 52.08

No. of LUT Flip Flop

pairs used (out of 37)
80 96 37 46 53.75 52.08

No. of bonded IOBs

(out of 480)
31 24 31 24 0.00 0.00

Max. combinational

path delay (ns)
7.82 9.611 7.536 9.235 3.63 3.91

Table2 shows the simulation results of proposed multiplier and original karatsuba multiplier both for without reduction and with

modulo reduction in GF(28) field. Our proposed multiplier is 30.36% (over without reduction) & 31.30% (over with reduction) less no

of XOR gates than Karatsuba multiplier. The overall area (in terms of slices) is also improved by 53.75% (over without reduction) &

52.08% (over with reduction). MKM is also faster than KM by 3.63% (over without reduction) & 3.91% (over with reduction).

http://www.jetir.org/

© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b609

TABLE 3: Comparison of resource utilization between KM and MKM (applied CSE method)

PARAMETER BIT CSE METHOD

APPLIED IN

PROOSED

KARATSUBA

MULTIPLIER

M-TERM KARATSUBA

LIKE BINARY

POLYNOMIAL

MULTIPLIER

NO. OF

LUT(OUT OF

63400)

 4

12 29

NO. OF

IOB(OUT OF

210)

19 19

PROPAGATION

PATH

DELAY(nS)

1.870 nS 2.767nS

NO. OF

LUT(OUT OF

63400)

 7

32 57

NO. OF

IOB(OUT OF

210)

27 27

PROPAGATION

PATH

DELAY(nS)

 2.37nS 2.80nS

Table3 shows the simulation results of CSE method applied in proposed multiplier and M-term Karatsuba like binary polynomial

Multiplier for without reduction in GF(24) & GF(27) field. Our proposed multiplier is faster than M-term Karatsuba like Binary

polynomial Multiplier[13].

5. APPLICATION

 In this Section, computation of circular convolution by employing proposed Modified Karatsuba Algorithm is presented. Assume

A and B are the two sequences, where A={a0,a1,a2,a3,a4,a5,a6,a7} and B={b0,b1,b2,b3,b4,b5,b6,b7}. All the points of A are placed on

the outer circle in the counter clockwise direction. Starting at the same point as A, all points of B are placed on the inner circle in

clockwise direction.

Expression of d0 is obtained by multiplying the corresponding samples points and then adding the product terms.

d0=a0b0+a7b1+a6b2+a5b3+a4b4+a3b5+a2b6+a1b7 (8)

Applying Modified Karatsuba Algorithm (MKA) in equation (8) we can obtain,

d0=a0b0+(a7+a1)(b7+b1)+a7b7+a1b1+(a5+a3)(b5+b3)+

 a5b5+a3b3+(a2+a6)(b2+b6)+a2b2+a6b6+a4b4 (9)

Similarly the expressions of d1,d2,d3, d4 d5,d6 and d7 are obtained and they are as follows:

d1=a0b1+a1b0+a2b7+a3b6+a4b5+a5b4+a6b3+a7b2

 =(a0+a1)(b0+b1)+a0b0+a1b1+(a2+a7)(b2+b7)+a2b2+a7b7+

(a3+a6)(b3+b6)+a3b3+a6b6+(a5+a4)(b5+b4)+a5b5+a4b4 (10)

d2=a0b2+a1b1+a2b0+a3b7+a4b6+a5b5+a6b4+a7b3

=a1b1+(a0+a2)(b0+b2)+a0b0+a2b2+(a7+a3)(b7+b3)+a7b7+a3b3

+(a4+a6)(b4+b6)+a4b4+a6b6+a5b5 (11)

d3=a0b3+a1b2+a2b1+a3b0+a4b7+a5b6+a6b5+a7b4

 = (a0+a3)(b0+b3)+a0b0+a3b3+(a1+a2)(b1+b2)+a1b1+a2b2

 +(a4+a7)(b4+b7)+a4b4+a7b7+(a6+a5)(b6+b5)+a5b5+a6b6 (12)

http://www.jetir.org/

© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b610

d4= a0b4 +a1b3+a2b2+a3b1+a4b0+a5b7+a6 b6+a7b5

 =(a0+a4)(b0+b4)+a0b0+a4b4+(a1+a3)(b1+b3)+a1b1+a3b3+

 (a5+a7)(b5+b7)+a5b5+a7b7+ a2b2+a6b6 (13)

d5=a0b5+a1b4+a2b3+a3b2+a4b1+a5b0+a6b7+a7b6

 =(a0+a5)(b0+b5)+a0b0+a5b5+(a1+a4)(b1+b4)+a1b1+a4b4

 +(a6+a7)(b6+b7)+a6b6+a7b7+(a2+a3)(b2+b3)+ a2b2+a3b3 (14)

d6= a0b6 +a1b5+a2 b4+a3b3+a4b2+a5b1+a6 b0+a7b7

 =(a0+a6)(b0+b6)+a0b0+a6b6+(a1+a5)(b1+b5)+a1b1+a5b5+

 (a2+a4)(b2+b4)+a2b2+a4b4+a7b7+a3b3 (15)

d7=a0b7+a1b6+a2b5+a3b4+a4b3+a5b2+a6b1+a7b0

 =(a0+a7)(b0+b7)+a0b0+a7b7+(a1+a6)(b1+b6)+a1b1+a6b6

 +(a2+a5)(b2+b5)+a2b2+a5b5+(a3+a4)(b3+b4)+a4b4+a3b3 (16)

TABLE 5: Comparison of device utilization and combinational path delay to compute circular convolution using KA and MKA for 8-bit input

Name of Parameters

Circular

Convolution

using KA

Circular

Convolution

using MKA

Improvement

(%)

No. of XOR gates 122 65 46.72

No. of Slice LUTs (out of 32640) 99 31 68.69

No. of bonded IOBs (out of 480) 24 24 0.00

Max. combinational path delay (ns) 9.614 7.336 23.69

0

20

40

60

80

100

120

140

No. of XOR gates No. of Slice LUTs

Comparision of complexity in Circular Convolution using KA and MKA

Circular Convolution

using KA

Circular Convolution

using MKA

Fig. 9: Area occupied (% slices) between circular Convolution using KA and MKA

The circular convolution algorithm is coded using Verilog HDL language. It is simulated and synthesized using Xilinx ISE 14.3i

software tool. Table 5 shows the comparison of device utilization and combinational path delay to compute circular convolution using

KA and MKA. It is observed that circular convolution based on MKA requires least amount of area and path delay. Figure 9 shows

the resource utilization in terms of % of XOR gates and slices, necessary for the implementation. In Vertex5 FPGA device family,

computation of 8-bit circular convolution based on MKA is 23.69% faster than KA. It also consumes 68.69% less slices than existing

KA based convolution.

6. CONCLUSION

In this paper, modified Karatsuba multipliers for degree 7 polynomials have been implemented on FPGA platform. The device

utilization and combinational path delay of MKM have been compared with standard 8×8 KM. It has been observed that the

proposed multiplier has better timing performance than standard KM. The new architecture is very simple and easy. This feature is

advantageous to have a suitable trade-offs between area and speed for implementing circular convolution algorithm in VLSI. In FPGA

device family, computation of 8-bit circular convolution using MKA is 23.69% faster than KA. It also consumes 68.69% less slices

than existing KA based convolution. MKM may also be used to design cryptosystems. Proposed multiplier is faster and hardware

efficient compared to existing Karatsuba multiplier.

http://www.jetir.org/

© 2022 JETIR September 2022, Volume 9, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR2209173 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b611

References

1. Z. J. Shi and H. Yun, “Software implementations of elliptic curve cryptography,” International Journal of Network Security,

vol. 7, no. 1, (2008), pp. 141-150.

2. T. Zhang and K.K. Parhi, “Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible

Polynomials,” IEEE Trans. Computers, vol. 50, no. 7, (2001), pp. 734-749.

3. C. Paar, P. Fleischmann, and P. Roeise, “Efficient Multiplier Architectures for Galois Fields GF(24n)” , IEEE Trans.

Computers, vol. 47, no. 2, (1998), pp. 162-170.

4. C. A. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed, “VLSI architectures for computing

multiplications and inverses in GF(2m)”, IEEE Transactions on Computers, Vol. 34, no. 8, (1985), pp.709- 717.

5. R. Masoleh and M.A. Hasan, “A New Construction of Massey- Omura Parallel Multiplier over GF(2m)”, IEEE Trans.

Computers, vol. 51, no. 5, (2002), pp. 511-520.

6. E. R. Berlekamp, “Bit-Serial Reed-Solomon Encoder”, IEEE Trans. Inform. Theory, vol. IT-28, (1982), pp. 869-874.

7. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by automatic computers”, in Doklady Akad. Nauk SSSR,

vol. 145, (1962), pp.293-294.

8. C. K. Koc, and S. S. Erdem, “A Less Recursive Variant of Karatsuba-Ofman Algorithm for Multiplying Operands of Size a

Power of Two”, Proceedings of the 16th IEEE Symposium on Computer Arithmetic, (2003), pp.1063-1069.

9. M. Cenk and F. O. Zbudak, “Improved Polynomial Multiplication Formulas over F2 Using Chinese Remainder Theorem”,

IEEE Transactions on Computers, vol. 58, no. 4, (2009), pp. 572- 576.

10. G. Zhou, H. Michalik and L. Hinsenkamp, “Complexity analysis and Efficient Implementations of Bit Parallel Finite Field

Multipliers Based on Karatsuba-Ofman Algorithm on FPGAs”, IEEE Transactions on Very Large Scale Integration Systems,

vol. 18, no. 7, (2010), pp.1057-1066.

11. X.N. Xie, G.L. Chen and Y. Li, “Novel bit-parallel multiplier for GF(2m) defined by all-one polynomial using generalized

Karatsuba algorithm”, Journal Information Processing Letters , vol.114 no. 3, (2014), pp.140-146.

12. J. Samanta, R. Sultana and J. Bhaumik, “FPGA Based Modified Karatsuba Multiplier” Int. Conf. on VLSI and Signal

Processing (ICVSP14-IEEE Sponsored) at IIT KGP, (2014), pp:1-6.

13. M.Thirumoorthi, M. Heidarpur,M. Mirhassani,” An optimized M-term Karatsuba Like Binary Polynomial Multiplier for Finite

Field Arithmetic “,IEEE transactions on very large scale integration(VLSI systems).

http://www.jetir.org/
http://dl.acm.org/author_page.cfm?id=86159060757&coll=DL&dl=ACM&trk=0&cfid=307958986&cftoken=87049033
http://dl.acm.org/author_page.cfm?id=81314481330&coll=DL&dl=ACM&trk=0&cfid=307958986&cftoken=87049033
http://dl.acm.org/author_page.cfm?id=86158735057&coll=DL&dl=ACM&trk=0&cfid=307958986&cftoken=87049033

